Extremal Properties of Random Structures
نویسندگان
چکیده
The extremal characteristics of random structures, including trees, graphs, and networks, are discussed. A statistical physics approach is employed in which extremal properties are obtained through suitably defined rate equations. A variety of unusual time dependences and system-size dependences for basic extremal properties are obtained.
منابع مشابه
Extremal Results for Random Discrete Structures
We study thresholds for extremal properties of random discrete structures. We determine the threshold for Szemerédi’s theorem on arithmetic progressions in random subsets of the integers and its multidimensional extensions and we determine the threshold for Turán-type problems for random graphs and hypergraphs. In particular, we verify a conjecture of Kohayakawa, Luczak, and Rödl for Turán-type...
متن کاملConcentration Properties of Extremal Parameters in Random Discrete Structures∗
2 Types of Concentration 2 2.1 No Concentration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2.2 “Weak” Concentration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.3 “Strong” Concentration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.4 “Very Strong” Concentration . . . . . . . . . . . . . . . . . . ....
متن کاملExtremal properties of random mosaics
László Fejes Tóth’s fascinating book [2] demonstrates in many ways the phenomenon that figures of discrete or convex geometry that are very economical, namely solving an extremal problem of isoperimetric type, often show a high degree of symmetry. Among the examples are also planar mosaics where, for instance, an extremal property leads to the hexagonal pattern. Mosaics, or tessellations, have ...
متن کاملHyperinvariant subspaces and quasinilpotent operators
For a bounded linear operator on Hilbert space we define a sequence of the so-called weakly extremal vectors. We study the properties of weakly extremal vectors and show that the orthogonality equation is valid for weakly extremal vectors. Also we show that any quasinilpotent operator $T$ has an hypernoncyclic vector, and so $T$ has a nontrivial hyperinvariant subspace.
متن کاملRegularity Lemma for k-uniform hypergraphs
Szemerédi’s Regularity Lemma proved to be a very powerful tool in extremal graph theory with a large number of applications. Chung [Regularity lemmas for hypergraphs and quasi-randomness, Random Structures and Algorithms 2 (1991), 241–252], Frankl and Rödl [The uniformity lemma for hypergraphs, Graphs and Combinatorics 8 (1992), 309–312, Extremal problems on set systems, Random Structures and A...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره cond-mat/0311552 شماره
صفحات -
تاریخ انتشار 2003